
Plug: Virtual Worlds for Millions of People

Shun-Yun Hu and Jehn-Ruey Jiang
Department of Computer Science and Information Engineering

National Central University, Taiwan, R.O.C.
{syhu, jrjiang}@csie.ncu.edu.tw

Abstract

We propose the design of Plug, an application to find and
keep contacts with friends within many inter-connected 3D
virtual worlds. Users use an instant messenger (IM)-like in-
terface to converse with friends and find new contacts, us-
ing a virtual representation of the user’s self. It consists of
three parts: a plug is an automatous agent / avatar situated
at a user’s computer that reflects and mimics its owner’s
behaviors and interests; a plugspace is a virtual environ-
ment that can be inter-connected, with scales ranging from
a room to an entire virtual universe; and plugtalk is a set
of packet formats and protocols that allow plugspaces to
inter-connect, and individual plugs to navigate. Plug uti-
lizes standards whenever possible, and is designed to be
scalable, extensible, and customizable for various uses such
as distance learning, virtual shopping, or online gaming.
By combining the looks of 3D virtual worlds and the acces-
sibility of IMs, we envision Plug as a step towards common
virtual world experiences sharable by all Internet users.

1. Introduction

In recent years, 3D multi-user virtual environments
(VEs) [28] have seen tremendous growth in the form of
massively multiplayer online games (MMOGs). MMOGs
allow people to assume virtual character representations
called avatars and participate in real-time, immersive in-
teractions along with up to hundreds of thousands of other
users. The most popular MMOG today, World of Warcraft
[32], has over 10 million paid subscribers as of 2008, while
the social virtual world Second Life also boosts over 10 mil-
lion accounts at a growth rate of 120 additional servers per
week [18]. These virtual worlds have not merely provided
a new form of entertainment, but also a window on what is
yet to come on the Internet. With current hardware trends,
the growth and popularity of VEs likely will increase and
diversify into other forms of applications such as learning,
training, shopping, and socializing.

Arguably, the largest potential for online virtual worlds
lies in the possibility to provide highly realistic, immersive
interactions with other people in simulated environments
across time and space. In the foreseeable future, graphics
technologies may provide photo-realistic rendering for even
average users; network bandwidth may increase to support
content streaming for millions of easily browsable 3D sites;
and imaging techniques may capture our facial expressions
and body gestures to support life-like, face-to-face commu-
nications using our avatars.

However, presently VEs are not yet a popular form of
Internet applications, and gamers only comprise a limited
fraction of Internet users. This lack of adoptions may be
contributed to three factors:
Incentive The most popular form of VE to date is MMOGs,
and the majority of MMOGs today confines to the genre of
role-playing games (RPGs), where players engage in quests
to gain experience points, virtual money, and equipment up-
grades. However, the RPG theme and genre may not appeal
to all people, and the time required to master a game can
deter causal Internet users.
Accessibility VEs today are still not as accessible as other
Internet applications due to their hardware requirements,
user interfaces, and time investments. As 3D content
is often large in volume (e.g., hundreds to thousands of
megabytes for a given MMOG), users often need to spend a
long time to download and install the program, and patch
for new updates. Compared with the experience of web
browsing, accessing VEs today is still time-consuming and
slow-paced.
Standard Two well-known elements to WWW’s adoption
and growth have been the HTML format and the HTTP
protocol. HTML de-couples the efforts of content authors
from software developers, and HTTP allows web browsers
and web servers to be independently developed. The de-
coupling and interoperability of various efforts have con-
tributed to scalable content and technology creations. How-
ever, while 3D content standards are emerging (e.g., Col-
lada [7], VRML and its successor X3D [35]), no recognized
protocols yet exist for VE applications.



Standards may not come easily given the diverse forms
of VEs. On the other hand, incentive and accessibility are
addressable with applications that are easy to install, quick
to launch, and useful to specific needs. One important ques-
tion related to incentive is the availability of content, as the
scale of the virtual world and the amount of user interests
are often determined by the amount of interesting content
that exists. For MMOGs, a large amount of resources are
often spent in content creation, where it is typically the most
costly task during game production [1]. User-generated
content hence is a viable alternative that could enable VEs
to stay interesting without requiring expensive content cre-
ation pipelines (e.g., the creator of SimCity and The Sims
Will Wright’s most recent game Spore expects the users to
create the majority of content [30]). The issue of acces-
sibility is partially addressed as the average hardware im-
proves. However, to deal with the typically large data vol-
ume, real-time content streaming is a more long-term solu-
tion, where users would only need a light installation, and
download other relevant content as needed [12, 19]. User-
generated content and content streaming thus have been the
basis for a growing number of VEs to provide better in-
centives and accessibility (e.g., Second Life builds on user-
generated content, and utilizes content streaming to deliver
terabytes of a growing content base [31]. Other recent VEs
such as IMVU, Metaplace, VastPark, and Google Lively1

also adopt a similar approach). Despite these general trends,
3D content creation is still out of reach for ordinary users,
and content streaming techniques are still in early stages
where their scalability and efficiency are improvable.

An interesting possibility lies in marrying the VE expe-
rience with the interface of instant messengers (IMs) [14],
which currently form some of the largest online networks
for Internet users (e.g., some IM networks today, such as
AIM, MSN, and QQ, boost between 100 to 200 millions
registered users, and up to 20 million peak concurrent users
[14]). If VEs can be accessed in IM-style (i.e., easy to in-
stall, non-intrusive, and useful for quick interactions), they
will likely become more useful and accessible.

2. Design of Plug

We propose to develop Plug, an IM-like, user-centered
virtual world application, formed by two main components:

Personalized, autonomous avatars Plug is based on
user-generated content to attract users. However, instead
of 3D content, we observe that the most interesting and
generative content is actually the people themselves. The
behaviors and conversations inside virtual worlds are the
strongest social glues that connect and retain people. How-
ever, people may not always be available online, or are al-
ways interested in being online. Yet, their personalities and

1http://mmve.wiki.sourceforge.net/Companies

behaviors often are still of interest to others. To maintain
and keep interesting personalities and behaviors always on-
line, we can encapsulate them in the forms of autonomous
agents that follow certain behavior scripts to act similarly
as, and in the interests of, the original users. Many of to-
day’s popular MMOGs are troubled by bots [6], which are
autonomous agents that continuously act and mine the re-
sources inside games. They are often banned by game com-
panies due to their disruptions to gameplay balance and fair-
ness (i.e., players would gain experience points or virtual
money without actually playing). However, Plug takes the
opposite approach and embraces the concept of bots, by re-
quiring every user to start the virtual world experience by
building a personalized self-acting avatar. The concept is
similar to owning a virtual pet on the user’s desktop [9],
except that the pet is the user himself or herself, acting on
behalf of the user, in manners similar to the owner. We call
this representation a plug of the user. A key functionality
for a plug is to navigate across different user-generated vir-
tual worlds on its own, search and interact with other plugs
of interests, and collect information on behalf of the user.

Inter-connected, streamable virtual worlds The uni-
verse in which the plugs live are a set of inter-connected
virtual worlds called plugspaces. Each plugspace is basi-
cally a VE with its own authentication, physics, interac-
tions, and script-based semantics. The plugspace server
also acts as the final arbitrator and repository for all the
game states in the virtual world. Plugspaces are scalable
both in the number of worlds (via common communication
protocols) and the number of participants within a world
(via distributed state management [10]). To allow greater
accessibility, each plugspace is stream-based, in the sense
that all 3D content (e.g., geometric meshes, textures, anima-
tion, physics rules), and the interaction / behavior scripts are
downloaded from the hosting site on demand. Users only
need a single universal client program to access and nav-
igate the various plugspaces. However, as each plugspace
may have its own rules on physical behaviors and semantics
(e.g., a space may have heavier or lighter gravity, support
for item trading or competitions among users). As such,
user clients will need to download and follow the script-
based rules when they enter a particular plugspace. Similar
to websites, plugspaces can be hosted by any individual or
organizations, on any machines connected to the Internet.
Often, a user starts the VE experience by creating a plug
and a room-sized plugspace, then it may control the plug
to enter and navigate plugspaces hosted by others. Differ-
ent plugspace owners may choose to collectively build a
larger space by following the same set of in-world seman-
tic scripts, and linking individually created regions via see-
through portals [29]. Depending on the plugspace’s cho-
sen state management scheme, interactions among the plugs
may or may not go through the plugspace server.



2.1 Usage scenario

Figure 1. Avatar chatting in IMVU [15]

Plug aims to help plug owners to maintain and develop
new social relations via natural and spontaneous interac-
tions. This is achieved in two stages: first, a user’s plug
may autonomously wander and navigate various public or
private plugspaces to find other interesting or like-minded
plugs. This is done by first learning a few well-known pub-
lic plugspaces or directories. The plugs could then nav-
igate much like bots in MMOGs, and interact with other
plugs according to their behavior scripts. If some interest-
ing plugs are found, the interactions (e.g., a conversation)
are recorded and brought back to the plug owners. Sec-
ond, individual plug owners may follow up to learn more
about, or initiate interactions with, the other plug owners,
by controlling the plugs themselves (similar to avatar chat-
ting in the 3D chatrooms of IMVU, see Fig. 1). Here the in-
teractions change from agent-to-agent to human-to-human,
where two or more people can converse or interact via their
plugs, with voice or text, body languages or avatar gestures.

2.2 Interoperability considerations

The most successful interoperable VE to-date is arguably
the Distributed Interactive Simulation (DIS) protocol [22],
which specifies a set of standard network packets such that
any compliant simulators can join a simulation at any time,
without a priori coordinations. On the other hand, API-
level standards such as High Level Architecture (HLA) [17]
has been less successful to offer interoperability among
different implementations. This experience suggests that
a common language at the network/protocol-level may be
more essential to true interoperability2. However, we ob-
serve that a common set of network packets may not be
enough for VEs, as the interpretations (i.e., processing) of
the events and updates within the packets also need to be
consistent to ensure consistent behaviors across hosts. In

2http://www.web3d.org/x3d/workgroups/x3d-networking/

Figure 2. Data transfer in a Plug scenario

other words, VE nodes also need to agree at the semantic
(i.e., game rules) level in order to be interoperable.

Plugspaces are intended to support interoperability with
a common set of content formats, transmission protocols,
and interaction scripts. As such, we try to utilize existing
standards and protocols whenever possible. For example,
the ISO standard X3D [35] is intended to be used as the
main 3D content format. Although Collada [7] is another
popular content format for games today, it lacks consider-
ations for streaming and object interactions due to its de-
sign as an intermediate format in the content production
pipeline [2] rather than as a deployment format. By using
X3D for content representations, 3D avatars and objects can
transit across plugspaces consistently.

For network communications, a set of protocols on top
of TCP and UDP called plugtalk will be devised to allow
different virtual worlds to negotiate the positions of por-
tals and avatar transfer, so that users can walk from one
plugspace to another. Plugtalk is mainly designed to aid
the transitions between plugspaces, while leaving the in-
ternal semantics and state management to the interaction
scripts of individual plugspaces. To allow flexible inter-
pretations of VE schematics, while ensuring consistent in-
terpretations for plugspaces that share the same semantics,
the interaction scripts follow a layered design similar to the
X3D standard, where various profiles [35] encapsulate and
define different levels of semantic commonality. For exam-
ple, at the most basic level, the data regarding avatars (e.g.,
appearance and animations) and physical properties (e.g.,
positions and movements) should be understood and con-
sistently interpreted by all plugspace servers. Transitions
of avatars between worlds should also be understood by all
servers. Beyond this level (e.g., how many hit points will an
attack takes), the semantics is left for the interaction scripts
to decide, and consistent behaviors across VEs is achieved
only if the plugspace owners agree to adopt a common set
of scripts. See Fig. 2 for the communication flow in Plug.



3 Implementation Plans

Figure 3. realXtend test scene

Our goal for an initial Plug prototype is to bring a light-
weight, easily installable VE client to users, where the vir-
tual worlds can accommodate users scalably, and transit
them smoothly. Our main approach is to convert an existing
open source VE client to resemble IM in installation and
usage, by transforming its content assets into X3D formats,
and using peer-to-peer (P2P) networks to support VE’s state
management and content delivery [10, 12]. By adopting an
existing VE client, we can focus our efforts on building and
integrating relevant techniques that help current VEs to be
more accessible and useful, instead of content generation.
Adopting an existing client thus will provide us with real
content to work with, while allowing us to focus on other
aspects, such as improving incentives and accessibility for
users. Likewise, we will also utilize and enhance existing
open source libraries whenever possible. For example, we
could use FLoD [12] for content streaming, and VAST [11]
for distributive game state management.

We have surveyed and found two suitable open source
large-scale VEs that may be targets for conversion: World-
Forge [34] and realXtend [26] (Fig. 3). WorldForge is a VE
project started in 1998 and has subsequently developed a
number of related libraries as a game-building platform; re-
alXtend is a modified Second Life client that uses the open
source 3D engine OGRE [23] to support mesh-based mod-
els (which is more flexible than the primitive, or prim-based
modeling used in Second Life). It is also compatible with
both the official Second Life server and the open source
Second Life server Open Simulator [24]. As WorldForge
is still of prototype quality without the full functionalities
of large-scale VEs, our current choice will be to use realX-
tend as the basis to prototype Plug, while leveraging exist-
ing Second Life functions. To make a virtual world IM-like,
it is important to reduce its memory footprint so that only a
minimal amount of resource is needed when not in use. As
an example, the physical memory footprint of WorldForge

is 200MB, and realXtend is between 80MB to 100MB, but
both the 3D chatroom IMVU and the open source IM Pid-
gin [25] use only about 10MB of physical RAM. Our first
task will thus be to study the code structure of realXtend and
remove non-essential functionalities. We will also make the
client program minimized when not in use, so that rendering
is done only when active. As Second Life (and thus realX-
tend) already supports 3D streaming [12] (i.e., 3D content
is initially located at server-side), our second task will be
to utilize P2P content streaming to improve streaming effi-
ciency and scalability.

3.1 Avatar system

Automatous avatars require models, textures, anima-
tions, and behavior scripts to appear and function properly.
We will base the 3D representations of the avatars in the
X3D format, as it may be easier to transport avatars across
different plugspaces. To provide automatous agent behav-
iors, initially we will allow users to build avatar profiles
based on a list of keywords regarding personal interests.
Avatars will wander randomly between the plugspaces of
friends and public areas, then interchange and compare with
other plugs for similar interests based on keywords. If key-
words are matched, then a remote plug may be considered
as a potential friend reportable to the plug owner.

Regarding the search for like-minded users, we observe
that each of us often has questions that are best answered by
some knowledgeable persons. As everyone is knowledge-
able in certain areas, if knowledgeable people can be lo-
cated online to answer specific questions, timely help can be
provided, while new social interactions may also be stimu-
lated. We thus would also provide a mechanism for users to
search for and initiate conversations with appropriate users
given any question [13].

3.2 State management

Successful IM networks can easily reach into the range
of millions of concurrent users. It is thus important that the
Plug architecture can accommodate various user sizes scal-
ably. Recently peer-to-peer virtual environment research
has provided solutions ranging from overlay management
[11] (i.e., the discovery of neighbors within a visible area
without the help of servers), to state management [3, 10]
(i.e., the division of game object states onto different client
nodes, with considerations for consistency, load balancing,
and fault tolerance), to client-assisted services (e.g., voice
chatting [16] or content streaming [12]). We will adopt
Voronoi State Management (VSM) [10] as the main ob-
ject state management system, by distributing the existing
client-server event-processing to selected super-peers.



3.3 Content streaming

As realXtend is based on the official Second Life client,
content streaming is already supported. However, there are
still two main tasks for us:

1) Distributed streaming: Second Life and realXtend
currently use the client-server model for content delivery,
which makes content streaming fairly slow under the lim-
ited amount of server bandwidth. A scene typically takes
over 30 seconds to one minute to download adequate de-
tails for interactions. We seek to improve the situation by
utilizing idling client upload bandwidth, so that concurrent
downloads from other clients may speed up the time to ob-
tain a scene. We will achieve this by using and improv-
ing the FLoD library [12], which supports content discovery
and peer selection for distributed, P2P-based 3D streaming.

2) Format conversion: The two main considerations for
the content data itself are whether the content is progressive
(so that full download is not necessary before navigation)
and standardized (so that the same client may access dif-
ferent hosted worlds, and different client implementations
can likewise access the same world). VE content mainly
includes triangular meshes, 2D bitmaps (textures and light
maps), animation data, sound effects, and music. As stan-
dardized progressive formats already exist for texture im-
age and music / sound (e.g., textures may be stored as JPEG
or PNG files, music as MP3 or OGG files), the main for-
mat issue thus lies in mesh models and animations. It will
be our task to investigate whether the current formats used
by realXtend (i.e., the .mesh format in OGRE) can support
progressive transmission and be interchanged with X3D, so
that interoperability across implementations is possible.

3.4 Interaction scripts

Commercial large-scale VEs often utilize scripts to dic-
tate behaviors for non-player characters (NPCs) and game
objects. For example, Second Life uses Linden Script Lan-
guage (LSL) [20] as the internal script for all in-world ob-
ject behaviors. Likewise, Lua [21] has been used by many
MMOGs. We will simply adopt and continue the usage
for LSL as it is currently supported within realXtend, but
will also investigate the suitability for other script languages
(e.g., object behaviors currently supported within X3D) if
other behaviors require them.

3.5 Networking protocols

Plugtalk is the main communication protocol for Plug,
whose main function is to allow user avatars be identified
by different plugspaces and facilitate avatar transitions be-
tween them. Plugtalk will be a network-level, instead of
API-level protocol, in order to ensure its interoperability

and future extensibility. Common data for all avatars, such
as the representation for the 3D mesh model, texture, and
animation, as well as the position, scale, and orientation
of the avatar, will need to be commonly communicated. If
two worlds are connected via portals and desire a seamless
transition among them, they could indicate in their com-
munications that a common set of scripts are used by both
plugspaces. This way, the two plugspace servers could ex-
change state updates directly as if a continuous world is be-
ing hosted.

4 Related work

The most successful large-scale VEs to-date are
MMOGs (e.g., World of Warcraft and Second Life). How-
ever, most of these games require tedious downloads that
make them inconvenient to access. Guild Wars [33] utilizes
background download so that only a 100 kb loader is re-
quired at first. The execution of the loader then initiates the
download of the first 100 MB of data to start up the initial
game. Afterwards, continuous download occur in the back-
ground for content in nearby regions. In this way, download
time may become unnoticeable once the initial game starts.
However, Guild Wars is still an RPG that may not appeal to
the wider audience, and the 100 MB download still does not
compare with the almost instant access of the web.

Recent research on peer-to-peer virtual environments
(P2P-VEs) attempt to support scalable and affordable VEs
by distributing the bandwidth and processing loads tradi-
tionally assigned to centralized servers to all the participat-
ing client machines. Overlay designs such as Solipsis [8]
and VON [11], state management such as Colyseus [3] and
VSM [10], and systems such as HyperVerse [4] are some
examples. Additional work based on these overlay also
result in P2P-based 3D streaming design such as FLoD
[12] and LOD-DT [5], or consistency framework such as
Peers@Play [27]. We will utilize existing P2P-VE research
effort such as VON and FLoD to distribute game states and
support P2P-based 3D streaming in Plug.

5 Discussions

The designs of Plug address the following key issues for
VE adoptions:

Incentive Plug is designed as a non-intrusive, simple ap-
plication that sits on the user’s desktop like an IM. The main
function of Plug is to provide users a way to customize and
train their avatars to search for other interesting people, and
interact with them in a virtual world setting. These short
socialization-oriented interactions are potentially more ap-
pealing and easier to use than current RPG-based gaming
scenarios, by providing useful real-world functions.



Accessibility Making the user experience IM-like ad-
dresses the accessibility issue by allowing users to quickly
enter a virtual world and start interactions any time, without
having to wait for tedious downloads. This is enabled via
distributed, concurrent streaming of the 3D content on P2P
networks, which helps to speed up content streaming and
enhance accessibility.

Standard Although standard is a difficult issue to ad-
dress, by making the basic infrastructure highly scalable
yet affordable to adopt, it will help standards to materialize
once a large enough userbase is formed. We intend to do
so by adopting peer-to-peer networks for all the underlying
content delivery and state management mechanisms.

6 Conclusion

A successful implementation of Plug will allow any ca-
sual Internet users to quickly initiate conversations or inter-
actions with other users within a virtual world setting. Inter-
net users thus may interact with others in a new way, and en-
joy the benefits of current virtual world technologies. With
Plug, we would like to see virtual worlds be as easy to host
as websites, and as accessible to use as web browsers or in-
stant messengers. Techniques developed with Plug, namely,
P2P-based 3D content streaming, state management, as well
as the networking protocol for avatar transitions, will be
useful as the basis for other types of VE applications. In
time, Plug may serve as the first step towards a massive 3D
Web based on virtual worlds, usable by millions of people.

Acknowledgments

We would like to thank the following individuals for in-
valuable discussions: Ye-Zen Chang Chen and Chen-Yu
Yeh (Yakko) for the conception of Plug; Shao-Chen Chang,
Jyun-Jie Huang, Davild Liu, Guan-Yu Huang, and Chien-
Hao Chien for usability ideas; Jon Watte and Don Brutzman
on interoperability issues.

References

[1] Multiplayer and network programming forum faq.
http://www.gamedev.net/community/forums/showfaq.asp?
forum id=15, 2008.

[2] R. Arnaud and T. Parisi. Developing
web applications with collada and x3d.
http://www.khronos.org/collada/presentations/, 2007.

[3] A. Bharambe, J. Pang, and S. Seshan. Colyseus: A dis-
tributed architecture for multiplayer games. In Proc. NSDI,
2006.

[4] J. Botev et al. The hyperverse - concepts for a federated and
torrent-based ”3d web”. In Proc. MMVE, 2008.

[5] R. Cavagna, C. Bouville, and J. Royan. P2p network for
very large virtual environment. In Proc. VRST, 2006.

[6] K.-T. Chen, J.-W. Jiang, P. Huang, H.-H. Chu, C.-L. Lei, and
W.-C. Chen. Identifying mmorpg bots: A traffic analysis
approach. In Proc. of ACM SIGCHI ACE 06, Jun 2006.

[7] Collada. The khronos group. http://www.collada.org/, 2008.
[8] D. Frey et al. Solipsis: A decentralized architecture for vir-

tual environments. In Proc. MMVE, 2008.
[9] GoPets. http://www.gopetslive.com/, 2008.

[10] S.-Y. Hu, S.-C. Chang, and J.-R. Jiang. Voronoi state
management for peer-to-peer massively multiplayer online
games. In Proc. NIME, 2008.

[11] S.-Y. Hu, J.-F. Chen, and T.-H. Chen. Von: A scalable peer-
to-peer network for virtual environments. IEEE Network,
20(4):22–31, 2006.

[12] S.-Y. Hu et al. Flod: A framework for peer-to-peer 3d
streaming. In Proc. INFOCOM, 2008.

[13] J.-J. Huang, S.-C. Chang, and S.-Y. Hu. Searching for an-
swers via social networks. In Proc. CCNC, 2008.

[14] IM. http://en.wikipedia.org/wiki/Instant messaging, 2008.
[15] IMVU. http://www.imvu.com, 2008.
[16] J.-R. Jiang and H.-S. Chen. Peer-to-Peer AOI Voice Chatting

for Massively Multiplayer Online Games. In Proc. P2P-
NVE, 2007.

[17] F. Kuhl, R. Weatherly, and J. Dahmann. Creating Computer
Simulation Systems: An Introduction to the High Level Ar-
chitecture. Prentice Hall, 1999.

[18] I. Lamont. Second life’s population problems.
http://www.computerworld.com/blogs/node/5122, March
2007.

[19] F. W. B. Li, R. W. H. Lau, and D. Kilis. Gameod: an internet
based game-on-demand framework. In Proc. ACM VRST,
2004.

[20] LSL. Linden script language.
http://wiki.secondlife.com/wiki/LSL Portal, 2008.

[21] Lua. http://www.lua.org/uses.html, 2008.
[22] D. C. Miller and J. A. Thorpe. Simnet: The advent of simu-

lator networking. Proc. IEEE, 83:1114–1123, 1995.
[23] OGRE. http://www.ogre3d.org/, 2008.
[24] OpenSimulator. http://opensimulator.org/, 2008.
[25] Pidgin. http://www.pidgin.im, 2008.
[26] realXtend. http://www.realxtend.org/, 2008.
[27] G. Schiele et al. Consistency management for peer-to-peer-

based massively multiuser virtual environments. In Proc.
MMVE, 2008.

[28] S. Singhal and M. Zyda. Networked Virtual Environments:
Design and Implementation. ACM Press, 1999.

[29] D. A. Smith, A. Kay, A. Raab, and D. P. Reed. Croquet - a
collaboration system architecture. In Proc. C5, 2003.

[30] D. Terdiman. Wright hopes to spore another hit.
http://www.wired.com/gaming/hardware/news/2005/05/67581,
2005.

[31] M. Wagner. Inside second life’s data centers.
http://www.informationweek.com/news/showArticle.jhtml?
articleID=197800179, 2007.

[32] Wikipedia. http://en.wikipedia.org/wiki/World of Warcraft,
2008.

[33] Wikipedia. Guildwars content delivery architecture.
http://en.wikipedia.org/wiki/Guild Wars, 2008.

[34] WorldForge. http://www.worldforge.org/, 2008.
[35] X3D. Web3d consortium.

http://www.web3d.org/about/overview/, 2008.


